A Short CEP135 Splice Isoform Controls Centriole Duplication

نویسندگان

  • Kristin D. Dahl
  • Divya Ganapathi Sankaran
  • Brian A. Bayless
  • Mary E. Pinter
  • Domenico F. Galati
  • Lydia R. Heasley
  • Thomas H. Giddings
  • Chad G. Pearson
چکیده

Centriole duplication is coordinated such that a single round of duplication occurs during each cell cycle. Disruption of this synchrony causes defects including supernumerary centrosomes in cancer and perturbed ciliary signaling [1-5]. To preserve the normal number of centrioles, the level, localization, and post-translational modification of centriole proteins is regulated so that, when centriole protein expression and/or activity are increased, centrioles self-assemble. Assembly is initiated by the formation of the cartwheel structure that comprises the base of centrioles [6-11]. SAS-6 constitutes the cartwheel, and SAS-6 levels remain low until centriole assembly is initiated at S phase onset [3, 12, 13]. CEP135 physically links to SAS-6 near the site of microtubule nucleation and binds to CPAP for triplet microtubule formation [13, 14]. We identify two distinct protein isoforms of CEP135 that antagonize each other to modulate centriole duplication: full-length CEP135 (CEP135(full)) promotes new assembly, whereas a short isoform, CEP135(mini), represses it. CEP135(mini) represses centriole duplication by limiting the centriolar localization of CEP135(full) binding proteins (SAS-6 and CPAP) and the pericentriolar localization of γ-tubulin. The CEP135 isoforms exhibit distinct and complementary centrosomal localization during the cell cycle. CEP135(mini) protein decreases from centrosomes upon anaphase onset. We suggest that the decrease in CEP135(mini) from centrosomes promotes centriole assembly. The repression of centriole duplication by a splice isoform of a protein that normally promotes it serves as a novel mechanism to limit centriole duplication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation.

Cep135/Bld10 is a conserved centriolar protein required for the formation of the central cartwheel, an early intermediate in centriole assembly. Surprisingly, Cep135/Bld10 is not essential for centriole duplication in Drosophila, suggesting either that Cep135/Bld10 is not essential for cartwheel formation, or that the cartwheel is not essential for centriole assembly in flies. Using electron to...

متن کامل

Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells

Centrosomes are key microtubule-organizing centers that contain a pair of centrioles, conserved cylindrical, microtubule-based structures. Centrosome duplication occurs once per cell cycle and relies on templated centriole assembly. In many animal cells this process starts with the formation of a radially symmetrical cartwheel structure. The centrosomal protein Cep135 localizes to this cartwhee...

متن کامل

Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly.

Centrioles are cylindrical structures that are usually composed of nine triplets of microtubules (MTs) organized around a cartwheel-shaped structure. Recent studies have proposed a structural model of the SAS-6-based cartwheel, yet we do not know the molecular detail of how the cartwheel participates in centriolar MT assembly. In this study, we demonstrate that the human microcephaly protein, C...

متن کامل

STIL is required for centriole duplication in human cells.

Centrioles are key structural elements of centrosomes and primary cilia. In mammals, only a few proteins including PLK4, CPAP (CENPJ), SAS6, CEP192, CEP152 and CEP135 have thus far been identified to be required for centriole duplication. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that is essential for mouse and zebrafish embryonic development and mutated in ...

متن کامل

A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication.

Most animals have two centrioles in spermatids (the distal and proximal centrioles), but insect spermatids seem to contain only one centriole (Fuller 1993), which functionally resembles the distal centriole. Using fluorescent centriolar markers, we identified a structure near the fly distal centriole that is reminiscent of a proximal centriole (i.e., proximal centriole-like, or PCL). We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015